Reklama

SATELITY

Młodzi polscy inżynierowie sprawdzą swój sposób na kosmiczne śmieci

Fot. PW-Sat2
Fot. PW-Sat2

Przetestowanie żagla deorbitacyjnego będzie najważniejszym elementem misji czwartego polskiego satelity – PW-Sat2. Żagiel, rozwiązanie zaprojektowane przez studentów Studenckiego Koła Astronautycznego (SKA) Politechniki Warszawskiej, ma szansę zapoczątkować nową erę w eksploracji kosmosu, zapobiegając pozostawaniu na orbicie niepotrzebnych i zaśmiecających ją satelitów. W ramach swojej misji PW-Sat2 wykona łącznie cztery eksperymenty. Satelita zostanie umieszczony na orbicie 19 listopada 2018 r., z pokładu rakiety Falcon 9. Strategicznymi partnerami studenckiego projektu są gliwickie firmy Future Processing oraz FP Instruments.

Żagiel deorbitacyjny zbudowany został z folii mylarowej o grubości dziesięciokrotnie cieńszej niż ludzki włos. Jego prototyp testowany był w warunkach stanu nieważkości i niskiego ciśnienia w wieży zrzutów w Bremie. Średnica zwiniętego żagla to około 8 cm, co jest niezwykle istotne ze względu na możliwość stosowania tego rozwiązania w nanosatelitach. Żagiel, po otwarciu na orbicie, będzie miał wymiary 2×2 metry.

– Otwarcie żagla spowoduje znaczne zwiększenie powierzchni satelity, a co za tym idzie oporu aerodynamicznego, który na niskiej orbicie okołoziemskiej będzie hamował satelitę. Po przeprowadzeniu pozostałych trzech eksperymentów satelita rozłoży żagiel, co spowoduje stopniowe obniżanie jego orbity, a w konsekwencji spalenie w atmosferze Ziemi. Komputer pokładowy, czyli "mózg" PW-Sata2 został ufundowany oraz oprogramowany przez firmę Future Processing. Inna Uwarowa, koordynator projektu

Ramiona żagla deorbitacyjnego zbudowane są ze sprężyn płaskich umieszczonych w mylarowych kieszeniach. Zmagazynowana energia sprężysta pozwala rozwinąć się żaglowi po jego wysunięciu z zasobnika, a kształt sprężyn pozwala zachować sztywność i stabilność nawet w warunkach normalnego ziemskiego ciążenia. Taka konstrukcja pozwoliła na osiągnięcie bardzo małych gabarytów żagla w konfiguracji zwiniętej (w zasobniku). PW-Sat2 ma kształt prostopadłościanu o wymiarach 10x10x22 cm, a żagiel zajmuje mniej niż 25 proc. objętości urządzenia.

Kolejny eksperyment będzie związany z określeniem pozycji satelity PW-Sat2 na orbicie, co umożliwi czujnik Słońca. Czujnik ten może być w przyszłości używany na innych satelitach do orientacji przestrzennej. Dzięki temu instrumentowi panele słoneczne satelitów używających takiego czujnika będą mogły być optymalnie ustawiane względem źródła światła. Zaprojektowany czujnik jest czujnikiem dwuosiowym i umożliwia wyznaczenie kierunku do Słońca w dwóch płaszczyznach. Elementy światłoczułe, określające natężenie padającego na nie światła, rozmieszczone są na czterech ściankach czujnika. W tym samym czasie promienie słoneczne padają na każdą ze ścianek pod różnym kątem, co pozwala określić kierunek do Słońca. Dane o natężeniu światła z każdej ze ścianek są przekazywane do procesora, gdzie przy użyciu odpowiedniego algorytmu i danych kalibracyjnych przeliczane są na wartości kątowe. Dokładność czujnika zbudowanego dla PW-Sat2 jest szacowana na około 1°. W satelicie zastosowana jest potrójna redundancja czujników światła.

Na pokładzie satelity umieszczone są także dwie kamery, które zarejestrują proces otwierania się żagla deorbitacyjnego. Dzięki temu możliwe będzie zweryfikowanie poprawnego otwarcia się żagla. Być może PW-Sat2 wykona i prześle zdjęcia Ziemi, niemniej jednak nie jest to priorytetem misji. Użyte kamery używają matrycy CMOS o rozdzielczości 640×480 px.

Czwartym eksperymentem jest mechanizm rozkładania paneli słonecznych zaprojektowany przez studentów. Ogniwa słoneczne są podstawowym źródłem energii dla komputera pokładowego i urządzeń PW-Sata2. Satelita będzie stosował ogniwa zarówno przymocowane na stałe do obudowy urządzenia jak i na rozkładanych panelach słonecznych. Mechanizm rozkładania paneli słonecznych został zaprojektowany tak, aby zajmować minimalną ilość miejsca oraz zgodnie z wymaganiami standardu CubeSat. Mechanizmy takie stosowane są do otwierania paneli, aby zwiększyć efektywną powierzchnię odbierania światła słonecznego, zbieranego przez fotoogniwa.

Satelita PW-Sat2 trafi na orbitę synchronizowaną ze Słońcem o wysokości ok. 575 km. Start na pokładzie rakiety Falcon 9 planowany jest na drugą połowę listopada 2018r. z bazy Vandenberg w Stanach Zjednoczonych. Partnerem strategicznym budowy PW-Sat2 są gliwickie firmy Future Processing oraz FP Instruments. Obydwie firmy udzielają studentom wsparcia merytorycznego, a wiosną 2016 roku ufundowały komputer pokładowy, dzięki czemu możliwe było przejście do kolejnego etapu projektu.

Studenci pracowali nad satelitą w cleanroomie (miejsce o podwyższonej czystości i kontrolowanych parametrach, o znikomej ilości zanieczyszczeń typu: pył, kurz, opary chemiczne) Centrum Badań Kosmicznych PAN oraz dzięki JM Rektorowi PW w Centrum Zaawansowanych Materiałów i Technologii CEZAMAT. Wcześniej przez wiele miesięcy projektowali i rozwijali swoje rozwiązania w Centrum Zarządzania Innowacjami i Transferem Technologii Politechniki Warszawskiej. Wraz z firmą SoftwareMill stworzyli narzędzie do analizy i prezentacji danych odebranych z satelity, które będzie dostępne dla internautów i radioamatorów. Współpracowali z takimi firmami jak OMAX Polska, EC Test Systems czy Astronika. Studenci podczas swoich prac uzyskali nieocenioną pomoc od PGNiG S.A., Instytutu Lotnictwa i Agencji Rozwoju Przemysłu. Swojego wsparcia podczas rozwoju projektu udzieliły firmy takie jak Polska Grupa Zbrojeniowa, ABM Space, Piasecka&Żylewicz, Weil, Komes, Spacive, Rapid Crafting czy Ltt. Partnerem strategicznym budowy PW-Sat2 są gliwickie firmy Future Processing oraz FP Instruments.

Źródło: PW-Sat2

Reklama
Reklama

Komentarze